Excluded-Minor Characterization of Apex-Outerplanar Graphs

نویسندگان

  • Guoli Ding
  • Stan Dziobiak
چکیده

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Graph Minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Related Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 2: Key Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Key Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 3: Connectivity Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Case 1: Both Sides Non-Outerplanar . . . . . . . . . . . . . . . . . 24 3.3 Case 2: One Side Outerplanar . . . . . . . . . . . . . . . . . . . . . 28 3.3.1 Case 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 Case 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Chapter 4: Connectivity Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excluded-minor Characterization of Apex-outerplanar

The class of outerplanar graphs is minor-closed and can be characterized by two excluded minors: K4 and K2,3. The class of graphs that contain a vertex whose removal leaves an outerplanar graph is also minor-closed. We provide the complete list of 57 excluded minors for this class.

متن کامل

A Characterization of K2, 4-Minor-Free Graphs

We provide a complete structural characterization of K2,4-minor-free graphs. The 3-connected K2,4minor-free graphs consist of nine small graphs on at most eight vertices, together with a family of planar graphs that contains K4 and, for each n ≥ 5, 2n − 8 nonisomorphic graphs of order n. To describe the 2-connected K2,4-minor-free graphs we use xy-outerplanar graphs, graphs embeddable in the pl...

متن کامل

Seymour's conjecture on 2-connected graphs of large pathwidth

We prove the conjecture of Seymour (1993) that for every apex-forest H1 and outerplanar graph H2 there is an integer p such that every 2-connected graph of pathwidth at least p contains H1 or H2 as a minor. An independent proof was recently obtained by Dang and Thomas (arXiv:1712.04549).

متن کامل

Bipartite minors

We introduce a notion of bipartite minors and prove a bipartite analog of Wagner’s theorem: a bipartite graph is planar if and only if it does not contain K3,3 as a bipartite minor. Similarly, we provide a forbidden minor characterization for outerplanar graphs and forests. We then establish a recursive characterization of bipartite (2, 2)-Laman graphs — a certain family of graphs that contains...

متن کامل

1-perfectly orientable K4-minor-free and outerplanar graphs

A graph G is said to be 1-perfectly orientable if it has an orientation D such that for every vertex v ∈ V (G), the out-neighborhood of v in D is a clique in G. We characterize the class of 1-perfectly orientable K4-minor-free graphs. As a consequence we obtain a characterization of 1-perfectly orientable outerplanar graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2016